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Abstract

Autism spectrum disorder (ASD) is a highly-prevalent neural
developmental disorder often characterized by social commu-
nicative deficits and restricted repetitive interest. The hetero-
geneous nature of ASD in its behavior manifestations encom-
passes broad syndromes such as, Classical Autism (AD), High-
functioning Autism (HFA), and Asperger syndrome (AS). In
this work, we compute a variety of multimodal behavior fea-
tures, including body movements, acoustic characteristics, and
turn-taking events dynamics, of the participant, the investiga-
tor and the interaction between the two directly from audio-
video recordings by leveraging the Autism Diagnostic Obser-
vational Schedule (ADOS) as a clinically-valid behavior data
elicitation technique. Several of these signal-derived behavioral
measures show statistically significant differences among the
three syndromes. Our analyses indicate that these features may
be pointing to the underlying differences in the behavior char-
acterizations of social functioning between AD, AS, and HFA
- corroborating some of the previous literature. Further, our
signal-derived behavior measures achieve competitive, some-
times exceeding, recognition accuracies in discriminating be-
tween the three syndromes of ASD when compared to inves-
tigator’s clinical-rating on participant’s social and communica-
tive behaviors during ADOS.
Index Terms: behavioral signal processing (BSP), autism spec-
trum disorder, dyadic interaction, multimodal behaviors

1. Introduction
Recent effort in developing computational framework to better
understand socio-communicative aspects of human communi-
cation has become a crucial component in the emerging fron-
tier of interdisciplinary research, e.g., social signal processing
[1] and behavioral signal processing [2]. One of the key appli-
cations is in autism spectrum disorder (ASD). ASD is a highly
heterogeneous and highly prevalent (1 in 88 children in the USA
[3]) neuro-developmental disorder. Recent studies have started
to demonstrate the use of low-level behavioral cues in studies of
ASD. For example, Marchi et al. demonstrate that the low level
acoustic descriptors characterizing emotion expression of ASD
children can be used to differentiate between typically- (TD)
and ASD children [4]. Another study also shows that a variety
of acoustic features derived from spoken sentences can be used
to classify other diseases related to ASD (e.g., TD, Pervasive
Developmental Disorder (PDD), Pervasive Developmental Dis-
order Not Otherwise specified (NOS-PDD)) [5]. Further, Liu
et al. propose to recognize autism with promising accuracies by
modeling facial expression from images [6]; motor abnormal-
ities have also been investigated by Crippa et al. showing that
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Figure 1: Schematic of Classical Autism, Asperger syndrome,
and High-functioning Autism distribution

upper body movement can potentially be useful in identifying
motor signature of ASD [7].

ASD is a combination of disorders that includes previously-
defined categories (i.e., AD, HFA, AS) and other mental dis-
eases. HFA was first observed by Kanner and Hans Asperger
[8] as a group of individuals standing out to possess above av-
erage range on cognitive and linguistic ability. Asperger syn-
drome was named after Hans Asperger and have been long con-
sidered as a similar syndrome to HFA [9, 10]. There has been
debates on whether the three syndromes should be viewed as
one category of neuro-developmental disorder or be divided into
different diseases [10, 11]. Due to synonymousness to autism
or otherwise having broad boundaries that may include other
mental disorders [12], HFA (autism subjects without cognitive
delay [13]) and AS has been merged as ASD in the latest di-
agnostic tool, Diagnostic and Statistical Manual (DSM-5)[14].
There are, however, still controversies on merging of HFA and
AS. Researchers report that AS have similar deficits in social
interaction and communication, but also display a rich variety
of subtle clinical characteristics that distinguish them from HFA
[12, 15]. For example, it is reported that impoverished intona-
tion is a characteristics related more to HFA [16]. In terms of
social engagements, AS children display more attention and re-
ciprocal social interactions [17].

In this work, we present a novel study by directly comput-
ing behaviors from spontaneous dialogs using audio-video data
to quantify the characteristics of deficit among ASD sub-groups
in a more granular and quantitative manner, which is a similar
concept stated in [18]. Bone et al. have also analyzed the sub-
tle prosodic variations of interlocutors during the Autism Di-
agnostic Observation Schedule to identify relevant acoustical
patterns related to the severity of ASD [19]. ADOS is a stan-
dardized assessment for assessing ASD through semi-structured
dyadic interactions in clinical practice [20]. We can concep-
tualize this procedure of ADOS as composed of two compo-



Figure 2: Research flow chart:(left) We split turn-taking events region manually and automatically.(middle) Acoustic features, action
energy, duration features are calculated among each turn-taking event to be the segment-level features. Then, segment-level features are
further encoded by five basic statistical values and become session level features(right) We conduct t-test to show that our calculated
behavior features are statistically different, and also perform multimodal recognition between the three syndromes.

Figure 3: A demonstration of our experiment setting (a mock up
scene resembling the real ADOS collection).

nents: 1) interaction setting: eliciting natural and targeted be-
haviors for ASD participants through clinically-valid design of
dyadic interactions, 2) behavior rating: assessing clinically-
relevant behaviors of ASD participants by certified investigator
as he/she engages in such an interaction session. By leverag-
ing ADOS interviews as providing clinically-rigorous interac-
tion settings for computational behavior analyses, we can mea-
sure behaviors, i.e., body movements, vocal characteristics, and
turn-taking events dynamics, of the participant, the investigator,
and the interaction between the two as alternative signal-derived
behavior ratings in tasks of analyzing differences among the
three different categorizations.

Our analyses reveal that several behavior cues, such as the
ratio between normalized body movement energy across a turn-
taking event, harnomic-to-noise measure of autistic patient’s
vocal characteristics, and the response latency during a turn-
taking events, show statistically-significance differences be-
tween AS and HFA groups. Furthermore, these signal-derived
behaviors achieve competitive, sometimes exceeding, recogni-
tion accuracies in discriminating between the three categoriza-
tions of ASD when compared to investigator’s rating on social
and communicative ratings (summative and holistic behavior
features of the participant during ADOS interviews).

2. Research Methodology
2.1. Database Description
In this work, we analyze the spontaneous interaction data of
ADOS diagnosis interviews 1. ADOS is a clinically-valid in-
strument in eliciting natural and targeted social communicative
behaviors of the participant through semi-structured dyadic in-
teractions. ADOS manual is one of the gold standards in diag-
nosing and assessing the severity of ASD in clinical practices.
The structure of ADOS consists of a series of activities in order
for the investigator to elicit and rate the behaviors of the partic-
ipant related to communication, social interaction, play, imag-

1Approved by IRB: REC-10501HE002 and RINC-20140319

Table 1: Demographics of ASD participants in our dataset
ASD Clinical Diagnosis

Autism (13) AS (11) HFA (10)
Age (Avg/Std) 14.2/3.08 15.1/2.80 17.7/4.29
Module (M3/M4) 11/2 7/4 3/7

inative use of materials, etc. Psychiatrists need to go through
intensive and rigorous training to become certified in order to
be eligible in carrying out an ADOS diagnosis interview.

Our recordings of ADOS sessions, lasts about forty minutes
to an hour, are administered at the Department of Psychiatry,
National Taiwan University Hospital (NTUH). We set up three
high-definition cameras (two of them facing the participant with
one facing the investigator), and two lapel microphones (each is
clipped on an individual speaker’s collar). Figure 3 shows a
snapshot of our data collection process from two of the three
camcorders. To date, we have collected 34 ASD participants’
data during ADOS interviews. The investigator also provides
the final clinical diagnoses of these 34 participants based on a
combination of ADOS, Autism Diagnostic Interview-Revised
(ADIR) [21], and other relevant clinical instrument; 13 of them
are assigned as AD, 11 of them are AS, and 10 of them are HFA.
Table 1 shows the demographics of our subjects.
2.2. Multimodal Behavior Measurements
Our feature computation involves several major components:
segments in turn-taking events, low-level descriptors(LLDs),
types of perspectives, segment-level functions, session-level
statistics (a schematic flow is shown in Figure 2).
2.2.1. Turn-taking Event and Segmentation
The ability to maintain a smooth conversation require appropri-
ate signaling and reacting during floor exchange, in fact, turn-
taking deficit has been demonstrated in the ASD population
[22]. Since the ADOS interview involves back-and-forth spo-
ken interactions, we first identify a turn-taking event within the
conversation as a complete floor exchange between the inves-
tigator and the participant. Within each turn-taking event, we
split this region into three segments: Investquest, Gap, Partresp.
Investquest (the term participant and investigator is abbreviated
as ”part” and ”invest” respectively) defines the region starting
from the beginning of investigator’s question to the end before
giving the turn to the participant. Gap defines the response la-
tency between the end of a question and the beginning of the
participant’s answer. Finally Partresp defines the entire region
where participant answers the investigator’s question.

The identification of a turn-taking event and subsequently
three different segments are done both manually and automat-



Table 2: A list of behavior features and the components required to compute the session-level features. (for convenience, the term
participant is abbreviated as ”part” and investigator is abbreviated as ”invest”)

Component Items
Segment regions: Investquest, Gap, Partresp
Multimodal LLDs: Video: NBAE, Audio: Intensity, Pitch, HNR, Jitter, Shimmer, Time: Duration
Perspectives types: Inter-segment (Invest/Part), Intra-segment of Invest and Part
Segment-level functions: Standard deviation: Pitch, HNR, Mean: Intensity, NBAE
Session-level statistics: min, max, mean, median, std

ically. We leverage our recording setup where we have two
channels of audio, each from a speaker in the dialog. We per-
form speaker identification and segmentation by combining a
GMM-based voice activity detector along with algorithm based
on energy differential between the two channels. A smooth-
ing algorithm is further applied to filter out “non turn-taking”
events. The manually-defined segments are used in the analy-
sis experiment (section 3.2), and the recognition results for both
segmentation methods are provided in section 3.3.

2.2.2. Segment-level Multimodal Behavior Features
We calculate features of three major modalities at segment-level
for each turn-taking event: video, audio, and time. In the video
modality, we compute normalized body action energy features
(NBAE) describing relative amount of movement for a person.
NBAE is build upon dense trajectory feature extraction [23].
Dense trajectory methods are used to identify the moving ob-
jects within a video sequence by tracking the movements of fea-
ture points. First, dense feature points (xt, yt) are first sampled
on a grid space using W = 5 pixels and tracked in eight dif-
ferent spatial scales per frame t. Each point Pt = (xt, yt) is
tracked to the next frame t + 1 by median filtering in a dense
optical flow field ω = (ut, vt).

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(xt̄,yt̄)
(1)

These tracked points can be thought as an proxy to the amount
of movement(equals to the number of moving trajectories of a
frame in a video sequence over an interval). We then compute
the average number of points being tracked every 15 frames
(≈ 0.5 seconds) to be the amount of movement, termed ac-
tion energy (AE). Each AE is extracted at 0.5 second frame-
rate. Deficits of prosody have been described as an integral part
of disorder in ASD [24]. Hence, we further compute various
low-level prosodic descriptors (LLDs), including pitch, inten-
sity, harmonic-to-noise ratio (HNR), jitter, and shimmer using
the Praat toolkit [25]. Pitch, intensity, and HNR are extracted
at 10ms per second; these LLDs are further z-normalized with
respect to an individual speaker.

Since acoustic LLDs and AEs are at frame level, to de-
rive segment-level features, we further compute standard de-
viation of pitch and HNR and average of intensity and AE
over the segments within a turn-taking event (section 2.2.1).
Segment-level AEs are z-normalized with respect to individ-
ual speaker to derive the NBAE. We additionally include
the time aspect, i.e., durational features, as another set of
segment-level features. Lastly, aside from computing fea-
tures within each segment (i.e., termed as intra-segment) sep-
arately, in order to capture the dynamics between the inter-
locutors, we further calculate features of inter-segment by tak-
ing the ratio between the features derived from the investi-
gator’s intra-segment and the participant’s intra-segment. For
example, inter-segment features of Std(HNR)inter is equal to
Std(HNR)Invest-quest/Std(HNR)Part-resp.

2.2.3. Session-level Multimodal Behavior Features
Segment-level multimodal behavior features are computed for
every turn-taking event. We further calculate five additional

functionals (min, max, mean, median, std) to represent the
behaviors at the entire ADOS session-level, where the la-
bel of each participant is given. For example, median-
Std(HNRintra-part) is a feature computed by first taking the stan-
dard deviation of frame-level HNR values within the partici-
pant responding segment of each turn-taking region, then subse-
quently taking the median over the multiple turn-takings events
over a session. Table 2 summarizes the various components and
items that are used to to generate all of our segment-level fea-
tures and subsequently session-level behavior representations.

3. Experimental Setup and Result
3.1. Experimental Setup
In this work, we conduct two different experiments. The first
is to analyze the statistical differences between “AD vs. AS”,
“AS vs. HFA”, and “AD vs. HFA” using the computed session-
level features described in section 2.2. The features used in this
experiment are derived from manual segmentations to provide
a clean analysis. Statistical testing using Student’s t-tests are
carried out with significance level set at α = 0.05.

We conduct the second experiment as an automatic recog-
nition task using logistic regression trained on the selected
session-level features to discriminate between the three clini-
cal diagnoses of the ASD. In this experiments, we present our
recognition accuracies on features derived from both manual
and automatic segments identification to resemble the real-life
scenarios. Results of our behavior measure are further com-
pared to the psychological ratings done by the investigators dur-
ing the administration of ADOS. This experiment is carried out
in a leave-one-participant-out cross-validation, and we use un-
weighted average recall to measure our performance.
3.2. Statistical Analysis
Table 3 provides a list of session-level behavior features that
show statistically-significant difference at the level of α = 0.05
between any two diagnoses. The directions (greater or smaller
than) of the differences between groups are also indicated.

We identify several qualitative observations with this sta-
tistical analysis result. In “AS vs. HFA”, we show that
max-(NBAEintra-part) is significantly higher in HFA partici-
pant than in AS participants. A closer investigation suggest
that: AS participants have lower values in NBAE features be-

Table 3: A list of features are significant at α = 0.05, and the
direction of the difference is also indicated.

Behavior Features Significance Direction
median-(NBAEintra-Invest) X AS>AD
min-(Durationintra-Invest) X AS>AD
max-(Jitterintra-part) X AS>AD

median-Std(HNRintra-part) X AS>AD
max-(Durationinter) X AS>HFA
mean-(Durationinter) X AS>HFA
std-(Durationinter) X AS>HFA
max-(NBAEintra-part) X AS<HFA
max-(NBAEinter) X AD<HFA
max-(NBAEgap) X AD>HFA

median-(Durationgap) X AD<HFA



Table 4: A summary of multimodal feature recognition result. We use three feature modalities: action energy feature (NBAEPartresp),
acoustic feature (STD(HNR)Partresp), and time duration feature (Durationinter).

Behavior Feature Descriptions Multimodal Features Manually-marked / Automatically-defined Segments

AD vs AS AS vs HFA AD vs HFA AD vs AS vs HFA

Action Energy feature:
NBAEintra-part (A)

NBAEintra-part 0.38/0.67 0.71/0.63 0.73/0.69 0.43/0.43
Std-(HNRintra-part) 0.63/0.47 0.37/0.43 0.54/0.61 0.20/0.29
Durationinter 0.82/0.61 0.61/0.57 0.78/0.53 0.61/0.32

Acoustic feature:
Std-(HNRintra-part) (H)

A + H 0.50/0.56 0.66/0.45 0.64/0.73 0.45/0.39
H + D 0.77/0.58 0.61/0.57 0.78/0.70 0.54/0.43
A + D 0.77/0.62 0.80/0.62 0.78/0.79 0.61/0.40

Time duration feature:
Durationinter (D)

A + H + D 0.74/0.58 0.71/0.48 0.69/0.77 0.58/0.40

ADOS Diagnostic Behavior Ratings

Communication 0.66 0.71 0.45 0.44
Social 0.66 0.62 0.62 0.44
Communication + Social 0.75 0.70 0.54 0.50

cause their interactions with the investigator tend to be smoother
with the amount of body movements remain more consis-
tent (normal) throughout the ADOS interaction; unlike HFA-
participants, where some of them could not carry smooth social
interaction and show sudden abrupt or irregular (non-smooth)
body movement. Since NBAE is z-scored speaker-dependent
amount of movement, it is nature to see some of these sud-
den movements that HFA participants would have resulted in a
higher value of NBAE. Furthermore, we also observe that in-
ter-segment durational features show an overall higher value
in group of AS compared to HFA. Neither the durational fea-
ture for the investigator-questioning portion nor the participant-
responding portion show significant differences by itself; it is
the interaction effect between the two that display a significant
difference. This phenomena is likely to be in line with the
past literature, which indicates that AS participants are more
talkative and show higher motivation in social interaction [26].

In observing the difference in tasks of “AD vs. (HFA or
AS)”, several of the features appear possibility due to the severe
deficit in social communicative ability of AD participants. As
an example, the higher language and cognitive ability of HFA
(AS) is manifested in the the exchanges between the question
raised by the investigator and the answering given by the par-
ticipant. The interaction often turns out to be more engaging.
In summary, except for the well-known socio-communicative
behavior differences between AD versus HFA/AS groups, we
also demonstrate subtle behavior differences exhibited during
the ADOS interviews between HFA and AS.
3.3. Multimodal Recognition Experiment
Table 4 summarizes our recognition results calculated using
both manually and automatically marked turn-taking segments.
We use one type of segment-level feature from each modal-
ity, i.e., NBAE intra-part, Std-(HNRintra-part), and Durationinter,
and compute session-level functionals as input to our automatic
ASD categorization system. The three features are chosen due
to the statistical analysis result presented in section 3.2. Since
our data is from ADOS interactions, social and communication
rating done by the clinicians using the ADOS manual can be
viewed as the clinically-valid behavior ratings of the partici-
pant. In fact, the final clinical diagnosis often relies on these
experts’ behavior ratings from the ADOS interview. We can
thus compare the automatic recognition results from our multi-
modal behavior features, which are signal-derived and granular,
to the ADOS behavior ratings, which are expert-rated and holis-
tics, in tasks of distinguishing between the three syndromes.

The numbers in bold indicate a higher recognition accu-
racy achieved compared to using ADOS diagnostic behavior

ratings in Table 4. When using the manually segmented turn-
taking events, in the tasks of “AD vs AS”, “AS vs HFA”, “AD
vs HFA”, and “AD vs AS vs HFA”, our best recognition accu-
racies are 0.82, 0.80, 0.78, and 0.61 compared to 0.75, 0.71,
0.62, and 0.50 when using ADOS behavior codes as features,
respectively. The results show a degradation in the accuracy
when using the automatically-defined turn-taking events, espe-
cially in those cases where exact time boundary for durational
feature computations are important. Our multimodal features
computed on participant, investigator, and interaction between
two can be seen as proxy measures to various granular aspects
of interaction behaviors manifested in the signal characteris-
tics, and the ADOS behavior ratings can be seen as experts
perceptual judgment on participant’s severity in the deficit of
the social-communicative ability after being engaged in an in-
teraction. Our recognition results indicate that the signal-based
behavior measures possess as much discriminative information
on “AD vs AS” and “AS vs HFA” as compared to ADOS codes;
and they clearly outperforms ADOS behavior ratings on the task
of differentiating “AD vs HFA”.

4. Conclusions
In this work, we present a novel study using audio-video record-
ings of ADOS interviews. To the best of our knowledge, there
has not been automatic analysis on the behavior differences
among the three categorization of ASD. By computing features
representing characteristics of acoustics, motions, and conver-
sation structures of the participant and the investigator, we show
that there exists significant differences between the three syn-
dromes. In fact, our behavior features possess more discrimina-
tive power in detecting different subgroups of ASD compared
to the manual behavior codes derived from the ADOS manu-
als. While additional works on larger sample size are needed,
our initial result implicates the potential merit in deriving gran-
ular and signal-based features as quantitative measures to study
socio-communicative behaviors, which are often qualitatively-
described currently, at scale.

One of the immediate future work is to improve the end-
point algorithm for our automatic turn-taking events segmenta-
tion to ensure the robustness of our durational-based features.
Further, since ASD is a heterogeneous condition, except for
ADOS, other clinically relevant information, such as ADIR,
should also be considered. Each of these instruments provides
a window into better stratification of the broad ASD spectrum.
We will explore the use of multi-task learning that jointly lever-
ages multiple existing instruments along with the signal-derived
behavior cues in tasks of both detecting ASD and precise behav-
ior categorization of different ASD sub-groups.
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